Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in Cryptococcus deuterogattii.

Identifieur interne : 000789 ( Main/Exploration ); précédent : 000788; suivant : 000790

Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in Cryptococcus deuterogattii.

Auteurs : R Blake Billmyre [États-Unis] ; Shelly Applen Clancey [États-Unis] ; Joseph Heitman [États-Unis]

Source :

RBID : pubmed:28948913

Descripteurs français

English descriptors

Abstract

Pathogenic microbes confront an evolutionary conflict between the pressure to maintain genome stability and the need to adapt to mounting external stresses. Bacteria often respond with elevated mutation rates, but little evidence exists of stable eukaryotic hypermutators in nature. Whole genome resequencing of the human fungal pathogen Cryptococcus deuterogattii identified an outbreak lineage characterized by a nonsense mutation in the mismatch repair component MSH2. This defect results in a moderate mutation rate increase in typical genes, and a larger increase in genes containing homopolymer runs. This allows facile inactivation of genes with coding homopolymer runs including FRR1, which encodes the target of the immunosuppresive antifungal drugs FK506 and rapamycin. Our study identifies a eukaryotic hypermutator lineage spread over two continents and suggests that pathogenic eukaryotic microbes may experience similar selection pressures on mutation rate as bacterial pathogens, particularly during long periods of clonal growth or while expanding into new environments.

DOI: 10.7554/eLife.28802
PubMed: 28948913
PubMed Central: PMC5614558


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in
<i>Cryptococcus deuterogattii</i>
.</title>
<author>
<name sortKey="Billmyre, R Blake" sort="Billmyre, R Blake" uniqKey="Billmyre R" first="R Blake" last="Billmyre">R Blake Billmyre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham</wicri:regionArea>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clancey, Shelly Applen" sort="Clancey, Shelly Applen" uniqKey="Clancey S" first="Shelly Applen" last="Clancey">Shelly Applen Clancey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham</wicri:regionArea>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham</wicri:regionArea>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28948913</idno>
<idno type="pmid">28948913</idno>
<idno type="doi">10.7554/eLife.28802</idno>
<idno type="pmc">PMC5614558</idno>
<idno type="wicri:Area/Main/Corpus">000718</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000718</idno>
<idno type="wicri:Area/Main/Curation">000718</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000718</idno>
<idno type="wicri:Area/Main/Exploration">000718</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in
<i>Cryptococcus deuterogattii</i>
.</title>
<author>
<name sortKey="Billmyre, R Blake" sort="Billmyre, R Blake" uniqKey="Billmyre R" first="R Blake" last="Billmyre">R Blake Billmyre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham</wicri:regionArea>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clancey, Shelly Applen" sort="Clancey, Shelly Applen" uniqKey="Clancey S" first="Shelly Applen" last="Clancey">Shelly Applen Clancey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham</wicri:regionArea>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham</wicri:regionArea>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">eLife</title>
<idno type="eISSN">2050-084X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Variation, Population (MeSH)</term>
<term>Codon, Nonsense (MeSH)</term>
<term>Cryptococcus (drug effects)</term>
<term>Cryptococcus (genetics)</term>
<term>Cryptococcus (physiology)</term>
<term>Drug Resistance, Fungal (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>MutS Homolog 2 Protein (genetics)</term>
<term>Mutation Rate (MeSH)</term>
<term>Whole Genome Sequencing (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Codon non-sens (MeSH)</term>
<term>Cryptococcus (effets des médicaments et des substances chimiques)</term>
<term>Cryptococcus (génétique)</term>
<term>Cryptococcus (physiologie)</term>
<term>Protéine-2 homologue de MutS (génétique)</term>
<term>Protéines fongiques (génétique)</term>
<term>Résistance des champignons aux médicaments (MeSH)</term>
<term>Séquençage du génome entier (MeSH)</term>
<term>Taux de mutation (MeSH)</term>
<term>Variation intra-population (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>MutS Homolog 2 Protein</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Codon, Nonsense</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cryptococcus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Cryptococcus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cryptococcus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cryptococcus</term>
<term>Protéine-2 homologue de MutS</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cryptococcus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cryptococcus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Variation, Population</term>
<term>Drug Resistance, Fungal</term>
<term>Mutation Rate</term>
<term>Whole Genome Sequencing</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Codon non-sens</term>
<term>Résistance des champignons aux médicaments</term>
<term>Séquençage du génome entier</term>
<term>Taux de mutation</term>
<term>Variation intra-population</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pathogenic microbes confront an evolutionary conflict between the pressure to maintain genome stability and the need to adapt to mounting external stresses. Bacteria often respond with elevated mutation rates, but little evidence exists of stable eukaryotic hypermutators in nature. Whole genome resequencing of the human fungal pathogen
<i>Cryptococcus deuterogattii</i>
identified an outbreak lineage characterized by a nonsense mutation in the mismatch repair component
<i>MSH2.</i>
This defect results in a moderate mutation rate increase in typical genes, and a larger increase in genes containing homopolymer runs. This allows facile inactivation of genes with coding homopolymer runs including
<i>FRR1</i>
, which encodes the target of the immunosuppresive antifungal drugs FK506 and rapamycin. Our study identifies a eukaryotic hypermutator lineage spread over two continents and suggests that pathogenic eukaryotic microbes may experience similar selection pressures on mutation rate as bacterial pathogens, particularly during long periods of clonal growth or while expanding into new environments.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28948913</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>06</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2050-084X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2017</Year>
<Month>09</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>eLife</Title>
<ISOAbbreviation>Elife</ISOAbbreviation>
</Journal>
<ArticleTitle>Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in
<i>Cryptococcus deuterogattii</i>
.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.7554/eLife.28802</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e28802</ELocationID>
<Abstract>
<AbstractText>Pathogenic microbes confront an evolutionary conflict between the pressure to maintain genome stability and the need to adapt to mounting external stresses. Bacteria often respond with elevated mutation rates, but little evidence exists of stable eukaryotic hypermutators in nature. Whole genome resequencing of the human fungal pathogen
<i>Cryptococcus deuterogattii</i>
identified an outbreak lineage characterized by a nonsense mutation in the mismatch repair component
<i>MSH2.</i>
This defect results in a moderate mutation rate increase in typical genes, and a larger increase in genes containing homopolymer runs. This allows facile inactivation of genes with coding homopolymer runs including
<i>FRR1</i>
, which encodes the target of the immunosuppresive antifungal drugs FK506 and rapamycin. Our study identifies a eukaryotic hypermutator lineage spread over two continents and suggests that pathogenic eukaryotic microbes may experience similar selection pressures on mutation rate as bacterial pathogens, particularly during long periods of clonal growth or while expanding into new environments.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Billmyre</LastName>
<ForeName>R Blake</ForeName>
<Initials>RB</Initials>
<Identifier Source="ORCID">0000-0003-4866-3711</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clancey</LastName>
<ForeName>Shelly Applen</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heitman</LastName>
<ForeName>Joseph</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI039115</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI050113</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 AI039115</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007184</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Elife</MedlineTA>
<NlmUniqueID>101579614</NlmUniqueID>
<ISSNLinking>2050-084X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018389">Codon, Nonsense</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.3</RegistryNumber>
<NameOfSubstance UI="D051718">MutS Homolog 2 Protein</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000073537" MajorTopicYN="Y">Biological Variation, Population</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018389" MajorTopicYN="Y">Codon, Nonsense</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003454" MajorTopicYN="N">Cryptococcus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025141" MajorTopicYN="Y">Drug Resistance, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051718" MajorTopicYN="N">MutS Homolog 2 Protein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059645" MajorTopicYN="N">Mutation Rate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073336" MajorTopicYN="N">Whole Genome Sequencing</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cryptococcus deuterogattii</Keyword>
<Keyword MajorTopicYN="Y">Cryptococcus gattii</Keyword>
<Keyword MajorTopicYN="Y">evolutionary biology</Keyword>
<Keyword MajorTopicYN="Y">genomics</Keyword>
<Keyword MajorTopicYN="Y">homopolymers</Keyword>
<Keyword MajorTopicYN="Y">hypermutator</Keyword>
<Keyword MajorTopicYN="Y">infectious disease</Keyword>
<Keyword MajorTopicYN="Y">microbiology</Keyword>
<Keyword MajorTopicYN="Y">phenotypic diversity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>05</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28948913</ArticleId>
<ArticleId IdType="doi">10.7554/eLife.28802</ArticleId>
<ArticleId IdType="pmc">PMC5614558</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>G3 (Bethesda). 2017 Apr 3;7(4):1165-1176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28188180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Oct 3;135(1):174-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1996 Jun;142 ( Pt 6):1557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8704997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Nov 23;342(6248):396-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2555716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1992 Dec;132(4):963-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1459447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Fungal Infect Rep. 2012 Dec;6(4):245-256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23243480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2000 Feb;29(1):38-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10779398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18238-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Sep;37(9):986-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16086015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9757-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9275197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2017 May 30;8(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28559486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2017 Apr 12;284(1852):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28404772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(10):e1002936</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Jul 15;5(4):e01464-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25028429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Jul;83(14):5057-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3014530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Sep 16;365(6443):274-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8371783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2013 Jul;81(7):2616-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23670558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2017 Apr;205(4):1459-1471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28193730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Oct 27;437(7063):1360-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16222245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr 22;6(4):e1000850</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Dec 11;10(12):e1004849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25503976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Vet Mycol. 1992;30(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1573522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17258-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Sep;20(9):1297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20644199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23248287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 May;137(1):19-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8056309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSphere. 2017 Aug 30;2(4):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28875175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSphere. 2017 Jan 11;2(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28101535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Jul 31;11(7):e1005407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26230253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jan 15;264(2):1000-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2536011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2015 May;78:16-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25721988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Jun 07;5(6):e10978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20539754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 1;27(15):2156-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013 Sep;11(9):e1001653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24058295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Aug 11;536(7615):165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27479321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 07;8(8):e71148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23940707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Aug 22;16(16):1581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16920619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Jul 29;5(4):e01494-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25073643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Apr 21;434(7036):1017-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15846346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jun 15;267(17):12142-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1601880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3256-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16492773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Sep 01;6(5):e00868-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26330512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Nov 15;274(5290):1208-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8895473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jun 15;25(12):1564-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19369502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 May;17(5):2859-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9111358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2016 Mar 04;12(3):e1005868</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26943821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 1;15(7):1726-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8612597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fly (Austin). 2012 Apr-Jun;6(2):80-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22728672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2006;40:307-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17094739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2003 Aug;6(4):332-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12941400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Feb 15;10(4):407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8600025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Nov 3;2(11):e184</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2000;34:359-399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1972 Dec;72(4):551-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4569178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Mar 29;7:11128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27020939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Feb 15;25(4):701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9016618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Dec 23;7:2038</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28066361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 May 19;288(5469):1251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10818002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Nov 22;103(5):711-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2011 Feb 08;2(1):e00342-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21304167</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Billmyre, R Blake" sort="Billmyre, R Blake" uniqKey="Billmyre R" first="R Blake" last="Billmyre">R Blake Billmyre</name>
</noRegion>
<name sortKey="Clancey, Shelly Applen" sort="Clancey, Shelly Applen" uniqKey="Clancey S" first="Shelly Applen" last="Clancey">Shelly Applen Clancey</name>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000789 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000789 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28948913
   |texte=   Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in Cryptococcus deuterogattii.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28948913" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020